ScienceAlimentationInterview croisée d’Olivier Assouly, professeur de philosophie et responsable de la recherche et de l’édition à l’Institut français de la mode, et de Chritophe Audebert, ingénieur en biotechnologies, responsable R&D génomique à Gènes Diffusion (GD) et coordinateur scientifique de la plate-forme PEGASE-biosciences (GD / Institut Pasteur de Lille).

Source : La science au service de l’alimentation ? Regards croisés entre un chercheur et un philosophe

Tagged with:
 

Le premier MOOC, en français, ambitieux, pour tous les botaniques en herbe… du néophyte au plus confirmé. Ce MOOC s’est ouvert le lundi 05 septembre 2016, dans cette première session (il y en aura d’autres), pour une durée de 7 semaines. Des semaines durant lesquelles vous pourrez collectionner des badges synonymes de votre épanouissement culturelle au sujet des plantes. Vous pouvez accéder directement au MOOC de Tela Botanica en cliquant sur la capture d’écran ci-dessous.

MOOC_tela_botanica

Tagged with:
 

Escalona et alLe fait de simuler des données de séquençage est une approche de plus en plus populaire pour qui aime à jouer avec les solutions analytiques de séquençage haut-débit. Il va sans trop de développement nécessaire que l’une des caractéristiques de ces jeux de données synthétiques est leur totale maîtrise (organisme(s) à l’origine de la séquence, taux d’erreurs, d’insertion, de délétion, % de séquences contaminantes etc...). Le tout permettant relativement aisément d’exploiter des métriques telles que la F-measure qui peut se définir comme, un métrique qui combine la moyenne harmonique du rappel (sensibilité) et de la précision (spécificité), ceci donnant {\displaystyle F=2\cdot {\frac {({\text{précision}}\cdot {\text{rappel}})}{({\text{précision}}+{\text{rappel}})}}}

A des fins de comparaisons de différentes méthodes: plus une F-measure est élevée et proche de 1, plus votre méthode de mapping de reads, par exemple, sera jugée performante (encore faut il que le temps d’exécution soit jugé acceptable). Plus trivialement, ces reads synthétiques permettent de prendre en main les ressources, les logiciels et autres contingences nécessaires à une analyse post-séquençage liée à une technologie que vous souhaiteriez maîtriser. Des technologies pour lesquelles, trouver des données contrôlées, conformes à vos attentes, est plutôt difficile à exhumer. Certes la banque SRA du NCBI héberge une grande quantité de données produites sur un large spectre de technologies mais principalement dans un contexte de recherche donc difficilement contrôlable. Seules les séquences relatives à des run test, à partir de l’ADN d’organismes pris comme calibrateurs, telle que la coli DH10B  permettent d’appréhender ces données en réalisant l’hypothèse que l’organisme séquencé correspond parfaitement à la séquence de référence disponible (est ce systématiquement le cas ? nous pouvons largement en douter…).

Quoi qu’il en soit un nombre croissant d’outils est disponible. Ces outils plus ou moins paramétrables permettent de simuler des données d’à peu près n’importe quel séquenceur… La publication de Merly Escalona et al. dans le Nature Reviews (Genetics) de juin 2016 vous est disponible en cliquant sur l’image « A comparison of tools for the simulation of genomic next-generation sequencing data » en tête de cette article. Cette publication est, à ce jour, le plus complet tour d’horizon de cette problématique liée aux simulateurs de données de séquençage… problématique qui n’est pas le seul apanage des bio-informaticiens ou bio-analystes…

simulateurs_reads

Ce schéma reprend les caractéristiques de la vingtaine de simulateurs abordés dans la publication Escalona et al.

Tagged with:
 

imagesA moins de sortir d’une longue phase d’hibernation, tout un chacun aura eu les oreilles rebattues par les applications liées à la technologie CRIPSR/Cas9, la révolution de l’édition de gènes (comprenez modification). Plus facile à mettre en oeuvre que les technologies TALEN et autres nucléases doigt de zinc (voir la table ci-dessous), cette technologie est tout à la fois moins onéreuse et nettement plus efficace. Cette technologie est souvent comparée, du fait de sa précision d’utilisation, à une méthode de micro-chirurgie. Un nombre exponentiel d’articles scientifiques et non scientifiques font le panégyrique de cette révolution qui est la conséquences des travaux de Jennifer Doudna et Emmanuelle Charpentier.  Ces dernières ont permis de configurer cette technologie à partir de l’élucidation d’un mécanisme de vaccination primitif bactérien (nous reviendrons sur ce point fondamental dans un futur article).

Technologie Première utilisation Première application sur animaux vivants Echelle de temps pour la mise en œuvre
Zinc finger nucleases 1996 2002 mois / année
TALENs 2010-2011 2011 semaines
CRISPR/Cas9 2012 2012-2013 jours

Donc non ! il ne s’agit pas ici uniquement de contribuer à l’enthousiasme, certes communicatif, de cette révolution dans le domaine des biotechnologies qui est lui-même friand de ces révolutions qui se succèdent les unes aux autres… Il s’agit dans ce premier article abordant CRISPR/Cas9 de proposer un début de décryptage de ce qui se cache derrière la terminologie de Gene Drive, application de CRISPR/Cas9. Cette terminologie est encore une fois peu aisée à traduire à mi-chemin entre le pilotage et le forçage génétique. Quoi qu’il en soit derrière l’appellation Gene Drive, se cache une technologie qui mérite que l’on s’arrête pour pousser plus avant la réflexion, tant l’enfer est pavé de bonnes intentions… Pour faire monter la pression, il faut savoir que James Clapper, le directeur du renseignement national des États-Unis, a placé la technologie CRISPR mais surtout sa formulation « Gene Drive » au niveau des armes de destruction massive… rien que ça.

Gene Drive, technologiquement concentre dans une cassette, l’outil permettant d’accélérer sa propagation (les ciseaux permettant la microchirurgie sont embarqués et encodés au sein même du génome ciblé) ainsi que le gène que l’on souhaite voir introduire au niveau d’une espèce donnée, évidemment cette technologie s’intéresse principalement aux populations sauvages. Ainsi cette cassette possède sa propre capacité de propagation, échappant aux lois de Mendel. Correctement encodée au sein d’une partie de population « augmentée ou diminuée », une dizaine de générations d’individus se reproduisant de façon sexuée permet de faire en sorte que la cassette a contaminé l’intégralité ou l’extrême majorité de la population sauvage (voir le schéma ci-dessous). L’exemple souvent développé, sponsorisé par  la Fondation Bill-et-Melinda-Gates, consiste à proposer aux dirigeants africains des anophèles modifiés par cette technologie pour être résistants au parasite, Plasmodium falciparum, l’agent du paludisme. Rappelons que 650 000 personnes meurent chaque année de la malaria (rapport OMS de 2013), principalement sur le continent africain. Toujours dans les bons coups, Bill, pour soigner son karma! Ce dernier oublie néanmoins que le moustique génétiquement modifié agent mutagène puisque porteur de la cassette Gene Drive ne s’arrête pas aux frontières… mais qu’importe le moyen technologique existe donc que ne serions nous pas de fâcheux obscurantistes à réfléchir aux conséquences de l’utilisation de cette technologie avant de l’employer la fleur au fusil. Les « obscures rabat-joie » souvent du côté des écologues  s’opposent aux biologistes moléculaires, rapides prescripteurs d’une technologie prometteuse pour éradiquer un nombre substantiel de fléaux, quitte à modifier durablement la nature pour l’intérêt supérieur humain ou parfois même pour l’intérêt supérieur de quelques uns…

 

moustique_gene_drive

La technologie Gene Drive peut être utilisée pour :

• Éradiquer les maladies telles que le paludisme, la dengue, la fièvre jaune, virus du Nil occidental, la maladie du sommeil ainsi que beaucoup d’autres en modifiant les espèces d’insectes vecteurs des parasites, virus, bactéries causes de ces maladies

• Éradiquer les espèces envahissantes. Les dix premières espèces envahissantes aux États-Unis causent environ 42 milliards USD de dommages chaque année

• Certains évoquent avec beaucoup d’aplomb, l’utilisation de cette technologie pour une agriculture plus « durable » en inversant la résistance aux pesticides et aux herbicides. Cette fois c’est la plante résistante au glyphosate (la molécule du RoundUp) qui est ciblée.

Que de beaux et bons sentiments… en guise de promesses de cette technologie !

Les limites de la technologie :

• De « nombreuses » générations sont nécessaires pour répandre la mutation dans la population. La durée totale dépend du cycle de reproduction de l’organisme, du nombre d’individus porteurs de la cassette Gene Drive introduit initialement dans la population, de l’efficacité de la cassette et du  flux génétique (transfert d’allèles d’une population à une autre). Par exemple, cela pourrait prendre quelques années pour modifier une population d’insectes. Si 10 individus d’une population étaient porteurs d’une cassette Gene Drive  parmi une population constante de 100.000 organismes, il faudrait environ 16 générations – environ un an- pour se propager à 99% de la population sous de peu réalistes, conditions optimales.

• Cette technologie est inopérante sur des organismes ne reproduisant pas de façon sexuée comme les bactéries et les virus et aura des problèmes avec les espèces qui peuvent se reproduire de façon sexuée ou non, comme cela peut être le cas pour beaucoup de plantes.

• Certains types d’altérations devraient être réintroduites sans cesse. Par exemple, une cassette Gene Drive engendrant un trait qui est quelque peu nuisible à l’organisme finira par se « briser ». De même, une cassette engendrant une résistance aux herbicides inversée dans une mauvaise herbe aurait à lutter contre la sélection naturelle dans les zones où les herbicides ont été appliqués.

La technologie ouvre donc la boîte de Pandore de la modification génétique de population sauvage. Plus l’intervalle générationnel de la population cible sera court, plus l’objectif d’une  population « panmutée » sera facile à atteindre. Ci-dessous vous pourrez avoir un excellent point concernant la technologie à l’aide du travail de « the National Academies of Sciences Engineering and Medicine ».

doc brief report

doc1

Tagged with:
 

90 % de notre nourriture repose sur 23 espèces seulement. La diversité de ce que l’on cultive ou élève impacte le contenu de nos assiettes. Inversement, nos pratiques alimentaires et culturales impactent la biodiversité. Du champ à l’assiette, de l’assiette au champ, la biodiversité s’est imposée comme indicateur de la santé de notre terre nourricière, thermomètre d’un système défaillant, se corrigeant ou ignorant parfois son potentiel d’autodestruction. Après la prise de conscience, quelles solutions ?

Source : Biodiversité : prendre soin de son assiette pour prendre soin de la planète

 

Afficher l'image d'origineSi vous vous intéressez au séquençage haut-débit, que vous souhaitez avoir un panorama des diverses technologies à disposition et que vous êtes friands de schémas de principe: la publication de Sara Goodwin, John D. McPherson & W. Richard McCombie.  Cet article publié dans la revue Nature de mai 2016 promet de faire un retour en arrière sur 10 ans d’évolution du séquençage haut-débit. Elle parvient à tenir ses promesses et livre effectivement des schémas (avec la charte graphique « Nature ») très bien faits, très pédagogiques ! En outre, le tableau (Table 1 | Summary of NGS platforms) permet à tous les pourvoyeurs de projets nécessitant le recours à du séquençage, d’avoir un pense bête sous la main pour associer la bonne technologie à la question biologique qui leur incombe… Et comme vous êtes pressés, vous pourrez retrouver l’intégralité de cet article en vous promenant et cliquant sur l’image ci-dessous.

Sara_Goowdin et al

 

 

Afficher l'image d'origineUne femme américaine devient « biologiquement » plus jeune après le suivi d’une thérapie génique que sa propre société a développé. Où quand Dorian Gray fait du commerce sans nuance (attention ! jeu de mots) en mode transhumanisme 2.0.

Elizabeth Parrish,  directrice générale de Bioviva USA Inc., est devenue, à grand renfort de communication, le premier être humain « à rajeunir » grâce à la thérapie génique développée par cette même entreprise. Cette dernière, sur la page d’accueil de son site internet, promet de démocratiser, dans un avenir proche, la thérapie génique et cellulaire. Dans un environnement convivial et confortable, les médecins de la société sont là pour corriger, avec précision, votre patrimoine corporel en voie de décrépitude.

L’un des premiers développements de la société, trouve une application dans la lutte contre le vieillissement, ce qui constitue toujours un excellent business plan compte tenu d’une corrélation établie entre âge et solvabilité. Ce philtre de jeunesse cible les télomères dont la taille serait proportionnelle à notre délai de péremption. De par leur structure particulière, les télomères requièrent d’être maintenus par une transcriptase inverse cellulaire spécifique appelée télomérase. En absence ou dans le cas de défaillance de télomérase, les télomères raccourcissent progressivement, jusqu’à atteindre une taille critique qui entraîne un arrêt des divisions cellulaires caractérisant la sénescence réplicative. Ainsi, les télomères forment une structure essentielle dans le contrôle de la viabilité cellulaire. Ceux-ci permettent de maintenir l’équilibre entre le vieillissement cellulaire et le risque de prolifération cellulaire incontrôlée.

Le score des télomères est calculé en fonction de la longueur des télomères des lymphocytes T. Ce résultat est basé sur la moyenne des longueurs des télomères des lymphocytes T  par rapport à celle de la population américaine de même classe d’âge. Plus le score est élevé plus les cellules concernées seront considérées comme « jeunes » et par extension, plus le patient sera lui-même considéré comme biologiquement jeune. En septembre 2015, Elizabeth Parrish âgée de 44 ans (un peu jeune notre candidate au rajeunissement) a reçu deux des thérapies géniques expérimentales de sa propre entreprise:

  • l’une pour la protéger contre la perte de la masse musculaire liée à l’âge
  • l’autre combattant cette diminution quantitative de cellules souches associée au vieillissement et à ses conséquences

Le test évoqué ici a été initialement conçu pour démontrer l’innocuité de la dernière génération des thérapies géniques et cellulaires. Si les premières données s’avèrent exactes et incontestables, il s’avère que ce test constituera une première mondiale: l’allongement des télomères dont le rognage était perçu comme inéluctable, irréversible. Dans le viseur de Bioviva, le  vieillissement réversible est donc en ligne de mire ou du moins les gérascophobes que le test aura rassuré voire convaincu.

Auparavant, la thérapie génique a été utilisée pour allonger les télomères des cellules murines cultivées, mais jamais sur un patient humain. En septembre 2015, les scores des télomères des globules blancs d’Elizabeth Parrish ont été collectés, par une clinique spécialisée au niveau des tests de laboratoire  (SpectraCell à Houston), immédiatement avant que les traitements ne lui furent administrés. Ces scores ont révélé que les télomères d’Elizabeth Parrish étaient inhabituellement courts pour son âge, la laissant précocement vulnérable aux maladies liées à l’âge. En mars 2016, les mêmes tests ont été effectués par SpectraCell. Ces derniers ont révélé que ses télomères avaient « allongé » d’environ 20 ans, passant de 6,71kb à 7,33kb: les globules blancs d’Elizabeth Parrish sont devenus biologiquement plus jeunes. Ces résultats ont été contrôlés de façon indépendante par les fondations: Bruxelles Heales (Healthy Company Life Extension), et la fondation britannique Biogerontology Research Foundation.

Elizabeth Parrish mais qui aimerait bien le devenir

Elizabeth Parrish mais qui aimerait bien le devenir

Elizabeth Parrish argumente: « actuellement, peu de thérapies offrent de réels avantages pour les personnes souffrant de maladies du vieillissement. La modification du mode de vie a un impact que limité pour le traitement de ces maladies. Les progrès de la biotechnologie apparaît être une meilleure solution, [avec ce test] nous avons fait l’histoire! ». Plusieurs signaux alimentent le scepticisme des membres de la communauté scientifique. Ainsi le fait qu’il n’y ait pas aujourd’hui de corrélation établie entre la longueur des télomères et la santé d’une personne. « C’est comme pour les cheveux gris, ce n’est pas parce qu’on se les teint qu’on vivra plus longtemps » commente Dana Glei, chercheuse à l’Université de Georgetown. Bioviva continuera de contrôler le sang de Parrish pendant les années à venir. Il reste à évaluer si le succès observé sur des leucocytes peut être étendu à d’autres tissus ou organes, est ce que ce teindre les cheveux ou rallonger ses télomères nous permet de perdre (ou gagner, cela dépend du point de vue) quelques années. Toutes ces interrogations pourraient avoir leurs réponses dans les cellules d’Elizabeth Parrish, le «patient zéro» de la thérapie génique réparatrice. Depuis ses premières injections de thérapie géniques, Bioviva a suscité un intérêt mondial,  le scepticisme de communauté scientifique, l’engouement des investisseurs et à fourni un cas d’école pour tout bon bioéthicien.

Tagged with:
 

Malgré, le tirage d’oreilles de la FDA (la Food and Drug Administration), les consommateurs de génomique récréative ne se sont pas réellement détournés de 23andMe, société dans laquelle Google a injecté 4,0 millions d’USD. La société de  Anne Wojcicki l’ex-épouse du cofondateur de Google, Sergey Brin, n’a pas vu une perte significative de clientèle et, au contraire, a continué de recruter de nouveaux clients… pour franchir le cap du 1.000.000 durant l’année 2016.

L’implication de Google dans la société s’essoufflant (un divorce prononcé entre les fondateurs respectifs des deux sociétés, en 2015), 23andMe a cherché à transformer sa base de données de profils génomiques en profits financiers directs. Ainsi, plus d’une dizaine de sociétés ont négocié un accès à ces informations (Genentech, Pfizer, etc.). Ces informations semblent aujourd’hui constituer le vrai « business model » de 23andMe.

Si cette monétisation était complètement prévisible, il faut avouer que l’impact ou plutôt le non impact de la prise de position de la FDA atténue grandement ce que l’on avait pu annoncer au sein de l’article : 23andMe au point mort.

Afficher l'image d'origine

Tagged with:
 

Afficher l'image d'origine

Les cellules photovoltaïques ont un potentiel considérable pour satisfaire les besoins futurs en énergie renouvelable, cependant des méthodes efficaces et évolutives de stockage de l’électricité intermittente qu’elles produisent, sont aujourd’hui attendues pour la mise en œuvre, à grande échelle, de l’énergie solaire. Un stockage de cette énergie solaire pourrait passer par la case carburant. Le travail, présenté dans PNAS de février 2015 (Efficient solar-to-fuels production from a hybrid microbial–water-splitting catalyst system), rapporte le développement d’un système bioélectrochimique évolutif, intégré dans lequel la bactérie Ralstonia eutropha est utilisée pour convertir efficacement le CO2, avec l’hydrogène et l’oxygène produits à partir de dissociation de l’eau, en biomasse et alcools (cf. schéma ci-contre). Les systèmes photosynthétiques artificiels peuvent stocker l’énergie solaire et réduire chimiquement le CO2. Le système de fractionnement-biosynthétique hybride est basé sur un système de catalyseur inorganique, relativement abondant sur Terre (nécessairement sinon écologiquement ce ne serait pas terrible, avouons le…), biocompatible pour séparer l’eau en hydrogène et oxygène à des tensions basses. Lorsqu’elle est cultivée en contact avec ces catalyseurs, Ralstonia eutropha consomme le H2 produit pour synthétiser de la biomasse et des carburants voire d’autres produits chimiques, à partir de faible concentration de CO2 – sous entendu à des concentrations voisines de celles présentes dans l’air. Ce système évolutif a une efficacité énergétique de réduction de CO2 d’ ~ 50% lors de la production de la biomasse bactérienne et d’alcools. Ce dispositif hybride couplé à des systèmes photovoltaïques existants donnerait une efficacité énergétique de réduction des émissions de CO2 d’environ 10%, supérieure à celle des systèmes photosynthétiques naturels ! Nous en conviendrons la bactérie utilisée ici est génétiquement modifiée afin d’orienter son métabolisme vers une voie anabolique d’intérêt.

Ces travaux ouvrent la voie vers la « photosynthèse de synthèse ». Dans cette configuration intégrée, les rendements du solaire à la biomasse vont jusqu’à 3,2% du maximum thermodynamique pour dépasser celle de la plupart des plantes terrestres. En outre, l’ingénierie de R. eutropha a permis la production d’isopropanol jusqu’à 216 mg/L, le plus haut rendement jamais rapporté (> 300 %). Ce travail démontre que les catalyseurs d’origine biotique et abiotique peuvent être interfacés, intégrés… pour permettre à partir de l’énergie solaire, du CO2 et de quelques bactéries de développer des systèmes efficaces stockant une énergie intermittente sous forme de molécules organiques (le biomimétisme est la vraie tendance du moment).

Dans cette première version (celle du PNAS) l’électrode utilisée en nickel-molybdène-zinc s’est avérée toxique pour les bactéries qui voyaient leur ADN attaqué… dans cette version améliorée publiée dans Science (3 juin 2016)Afficher l'image d'origine, l’électrode toxique a été changée par une autre composée de cobalt-phosphore… Selon Daniel Nocera, le promoteur de l’étude : « Cela nous a permis d’abaisser la tension conduisant à une augmentation spectaculaire de l’efficacité. »

Nocera et ses collègues ont également été en mesure d’élargir la gamme de produits q’un tel système est capable de synthétiser pour y inclure l’isobutanol (un solvant) et l’isopentane (utilisé dans des boucle fermée pour actionner des turbines), ainsi que le PHB (un précurseur de bioplastiques). La conception chimique du nouveau catalyseur permet également une certaine « auto-régénération, » ce qui signifie que l’électrode ne sera pas lessivée au fur et à mesure de son activité.

 

Afficher l'image d'origineA moitié scientifique et à moitié homme d’affaire, Craig Venter qui n’a pas très bon goût concernant les couvertures de ses livres essaie de mettre la main sur les données de plusieurs centaines de milliers à plusieurs millions de génomes (séquences totales ou profils génétiques).  Mais que l’on se rassure c’est pour le bien de l’humanité ou au moins de la transhumanité !

Depuis 2005, les technologies de séquençage n’ont cessé d’être plus rapides et moins chères. En 2014, plus de 225.000 génomes humains étaient déjà séquencés grâce à plusieurs initiatives dont le fameux « 100 000 Genomes Project » britannique lancé en 2013. Début 2014 Illumina lançait une campagne de publicité mettant en scène le HiSeqX Ten, le premier séquenceur permettant d’atteindre la promesse d’un coût de séquençage humain à 1000 $. Cette année AstraZeneca annonçait sa collaboration avec le Human Longevity Institute de Craig Venter permettant à ce dernier un accès aux génomes ou profils génomiques de 2 000 000 de personnes d’ici 2020. En utilisant la seule séquence d’ADN, Venter dit que son entreprise peut maintenant prédire la taille, le poids, la couleur des yeux et la couleur des cheveux d’une personne, et produire une image approximative de son visage. Une grande partie de ces « détails » est dissimulé dans les variations rares, dit Venter, dont le propre génome a été mis à disposition dans les bases de données publiques depuis plus d’une décennie. Soit dit en passant, même ce promoteur d’un certain transhumanisme regrette son geste : « Si je devais conseiller un jeune Craig Venter », je dirais, réfléchissez bien avant que vous veniez déverser votre génome sur Internet« …

Quelques questions centrales demeurent et l’une d’elle consiste à envisager que le génome d’une personne n’est pas du ressort de sa seule propriété… en effet, rendre disponible son génome revient à rendre disponible une partie des informations de ces enfants et des enfants de ceux-ci etc. Effectivement, les promoteurs de la génomique à large échelle envisagent de dépasser les problématique de l’héritabilité cachée (à ce sujet, lire l’excellent article de Bertrand Jordan dans M/S : Le déclin de l’empire des GWAS). Voici un extrait très pertinent qui explicite ce problème : « Les identifications réalisées dans le cadre des études GWAS sont certes scientifiquement valables et utiles pour la compréhension du mécanisme pathogène (donc porteuses d’espoirs thérapeutiques), mais, rendant compte de moins d’un dixième des héritabilités constatées, elles passent visiblement à côté d’un phénomène important… Comment résoudre ce paradoxe ? Il faut pour cela revenir sur ce qu’examinent réellement les GWAS. Elles se limitent aux Snip, faisant (pour le moment du moins) l’impasse sur les copy number variations (CNV), ces délétions, duplications ou inversions dont on a découvert récemment plusieurs centaines de milliers dans notre génome. Et même pour les Snip, elles ne donnent pas une image complète des variations génétiques entre individus. Par la force des choses, les 500 000 Snip représentés sur les puces d’Affymetrix ou d’Illumina (et qui ont préalablement été étudiés par le consortium HapMap) correspondent à des poymorphismes assez facilement repérables dans un échantillon de population : la règle adoptée a été de ne retenir que les Snip pour lesquels la fréquence de l’allèle mineur est au moins égale à 5 %. Cet usage était nécessaire pour limiter les difficultés dans le positionnement des Snip lors de l’établissement des cartes d’haplotypes ; mais il a pour conséquences que les GWAS n’examinent que les variants fréquents… Selon une hypothèse largement répandue, les maladies multigéniques fréquentes (diabète, hypertension, schizophrénie…) seraient dues à la conjonction de plusieurs allèles eux aussi fréquents : c’est la règle « common disease, common variant » souvent évoquée depuis une dizaine d’années. Les résultats de la centaine d’études d’association pangénomiques pratiquées à ce jour indiquent que cette hypothèse est très probablement fausse : les variants communs ne rendant compte que d’une faible partie de l’héritabilité, le reste est vraisemblablement dû à des variants rares (ponctuels ou non) dont ces études ne tiennent pas compte puisque les puces utilisées ne les voient pas. »

 Ainsi, pour franchir ce cap, une solution simple est envisagée : le changement de résolution avec pour credo le passage de profils génomiques (quelques millions de SNPs) à l’intégralité du génome… et après l’épigénome et en même temps le métagénome. Si ces sciences bâties sur une technologie en pleine révolution permettent l’accès à un patrimoine humain universel (l’information génomique quasi exhaustive), si ces sciences renouvellent sans cesse leurs promesses -il faut des fonds et donc convaincre les pouvoirs publics pour acheter la technologie américaine qui permet d’accomplir ces sciences- hypothéquer le patrimoine humain ou pire le privatiser pourrait être une erreur dramatique dont on a du mal à mesurer l’étendue des conséquences.

Tagged with:
 
Set your Twitter account name in your settings to use the TwitterBar Section.